en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Une étude sur la construction et le contrôle d'une paramétrix pour l'équation des ondes. Le propos aborde également l'équation eikonale sur un espace-temps peu régulier. Cette quatrième partie porte notamment sur le contrôle des différents termes de l'équation. ©Electre 2025
Cet ouvrage est dédié à la construction et au contrôle d'une paramétrix pour l'équation des ondes homogène □gø = 0, où gest une métrique peu régulière satisfaisant les équations d'Einstein dans le vide. Le contrôle d'une telle paramétrix ainsi que du terme d'erreur associé lorsque l'on suppose seulement des bornes L2 sur le tenseur de courbureR de gest une étape cruciale de la preuve de la conjecture de courbure L2 proposée dans Klainerman (2000), et résolue dans Klainerman, Rodnianski & Szeftel (2015). Plus généralement, cet ouvrage concerne le contrôle de l'équation eikonale sur un espace-temps peu régulier et la dérivation de bornes L2 pour des opérateurs intégraux de Fourier sur des variétés avec une phase et un symbole peu réguliers, et possède de ce point, de vue un intérêt propre.
This book is dedicated to the construction and the control of a parametrix to the homogeneous wave equation □gø = 0, where g is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L2 bounds on the curvature tensor R of g is a major step of the proof of the bounded L2 curvature conjecture proposed in Klainer-man (2000), and solved jointly in Klainerman, Rodnianski & Szeftel (2015). On a more general level, this book deals with the control of the eikonal equation on a rough background, and with the derivation of L2 bounds for Fourier integral operators on manifolds with rough phases and symbols, and as such is also of independent interest.
Paru le : 29/11/2023
Thématique : Mathématiques Appliquées
Auteur(s) : Auteur : Jérémie Szeftel
Éditeur(s) :
Société mathématique de France
Collection(s) : Non précisé.
Série(s) : Non précisé.
ISBN : 978-2-85629-978-4
EAN13 : 9782856299784
Reliure : Broché
Pages : 314
Hauteur: 24.0 cm / Largeur 18.0 cm
Épaisseur: 2.0 cm
Poids: 0 g