en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Présente la théorie de Weyl-Kodaira, les potentiels de multicouches, les problèmes pour les opérateurs différentiels elliptiques, les équations paraboliques, l'équation des ondes, les équations strictement hyperboliques. ©Electre 2025
ÉLÉMENTS D'ANALYSE
Tome 8 - Chapitre XXIII
ÉQUATIONS FONCTIONNELLES LINÉAIRES
Deuxième partie
PROBLÈMES AUX LIMITES
Pour les équations paraboliques ou strictement hyperboliques, on n'a envisagé que le problème de Cauchy local, ou le cas où les données de Cauchy sont portées par une variété compacte sans bord ; et pour les équations elliptiques, hormis le cas particulier des équations différentielles ordinaires, on ne s'est guère occupé que du problème de Dirichlet dans un ouvert borné de Rn et des problèmes aux limites de même type. Par contre, dans ce domaine volontairement restreint, l'auteur n'a accordé aucune place privilégiée aux équations à coefficients constants ni aux équations du second ordre (à l'exception d'une section sur le principe du maximum). Il a surtout voulu montrer comment l'usage systématique des opérateurs de Lax-Maslov et des opérateurs pseudo-différentiels, conjugués, dans le cas des équations elliptiques, avec la théorie spectrale des opérateurs dans les espaces hilbertiens, conduit à des méthodes de solution beaucoup plus naturelles et explicites que les méthodes basées sur les "inégalités a priori", et donne directement (lorsque toutes les données sont indéfiniment différentiables) de vraies solutions indéfiniment différentiables, et non des solutions "faibles" inutilisables dans les applications.
Paru le : 22/12/2003
Thématique : Mathématiques Appliquées
Auteur(s) : Auteur : Jean Dieudonné
Éditeur(s) :
J. Gabay
Collection(s) : Non précisé.
Série(s) : Eléments d'analyse
ISBN : Non précisé.
EAN13 : 9782876472181
Reliure : Broché
Pages : XIII-330
Hauteur: 24.0 cm / Largeur 17.0 cm
Épaisseur: 2.1 cm
Poids: 680 g