en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Un mémoire sur les propriétés d'évolutions stochastiques par dualité de domaines dans des variétés. ©Electre 2025
Sur une variété, considérons une diffusion elliptique X de mesure invariante μ. Le but de ce papier est d'introduire et d'étudier les premières propriétés d'évolutions stochastiques de domaines (Dt)tЄ[0,τ] qui sont des processus duaux par entrelacement de X (où τ est un temps d'arrêt strictement positif précédant l'apparition éventuelle de singularités). Il s'agit d'une extension du théorème de Pitman, puisqu'il ressort que (μ(Dt))tЄ[0,τ] est un processus de Bessel-3, à un changement naturel de temps près. Quand X est un mouvement brownien sur une variété compacte, ce processus dual à valeurs domaines est une modification stochastique du flot par courbure moyenne auquel est ajouté une dérive fournie par un quotient isopérimétrique qui l'empêche de s'effondrer en des singletons.
On a manifold, consider an elliptic diffusion X admitting an invariant measure μ. The goal of this paper is to introduce and investigate the first properties of stochastic domain evolutions (Dt)tЄ[0,τ] which are intertwining dual processes for X (where τ is an appropriate positive stopping time before the potential emergence of singularities). They provide an extension of Pitman's theorem, as it turns out that (μ(Dt))tЄ[0,τ] is a Bessel-3 process, up to a natural time-change. When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift to prevent it from collapsing into singletons.
Paru le : 06/01/2022
Thématique : Statistiques
Auteur(s) : Auteur : Koléhè Coulibaly-Pasquier Auteur : Laurent Miclo
Éditeur(s) :
Société mathématique de France
Collection(s) : Non précisé.
Série(s) : Non précisé.
ISBN : 978-2-85629-935-7
EAN13 : 9782856299357
Reliure : Broché
Pages : 110
Hauteur: 24.0 cm / Largeur 18.0 cm
Épaisseur: 0.8 cm
Poids: 0 g