en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Cours de calcul variationnel enseigné à l'Ecole polytechnique de 1987 à 1990 au niveau licence, puis de 1992 à 1995 au niveau maîtrise. ©Electre 2025
Mathématiques
Ce cours a comme ambition de présenter les concepts de base permettant de discuter quelques problèmes classiques du calcul des variations. Tout en donnant des méthodes de portée générale, il est centré autour de la recherche des extremums d'une fonction définie sur un espace. Pour faire cela, il convient de généraliser la notion d'espace dans deux directions : d'abord, pour traiter commodément des objets qui sont « variés » (le plus souvent des fonctions), il faut disposer d'espaces qui possèdent naturellement une infinité de dimensions (c'est là une amorce de l'étude de l'analyse fonctionnelle qui s'est révélée si féconde dans la résolution des équations aux dérivées partielles) ; ensuite, pour trouver les extremums de la fonction étudiée, il faut pouvoir continuer à disposer d'une notion de dérivée dans des espaces courbes comme le sont la plupart des espaces de configuration intervenant dans des situations concrètes, par exemple en mécanique. C'est là une première rencontre avec la géométrie différentielle intrinsèque ; cette partie se cache souvent sous le nom de calcul différentiel. Pour ce faire nous avons délibérément utilisé le langage géométrique parce qu'il nous semble le mieux adapté et le plus efficace pour traiter les problèmes que nous avons en vue, d'où le titre de « Calcul variationnel » donné à ce cours.
Ces notes de cours en onze chapitres se décomposent naturellement en trois parties qu'il est bon d'aborder avec des états d'esprit assez différents. La première, intitulée « Le cadre analytique », regroupe les chapitres I, II et III. Elle se propose d'amplifier et de fortifier les connaissances antérieures des étudiants sur les fondements de l'analyse. La deuxième, intitulée « Le cadre géométrique », couvre les chapitres IV, V, VI et VII et introduit une démarche et des concepts plus nouveaux. Elle suppose la pratique de nombreux exercices (dont certains proposés dans ces notes de cours) pour se persuader que parler « en prose » tout en le sachant n'est finalement pas chose si difficile. La troisième enfin, intitulée « Le calcul des variations », englobe les chapitres VIII, IX, X et XI, (et est le véritable aboutissement du cours). Elle ouvre sur un champ très large d'applications, et c'est cette variété qui fait la force des théorèmes présentés.
Paru le : 15/10/2007
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : Jean-Pierre Bourguignon
Éditeur(s) :
Ecole polytechnique
Collection(s) : Mathématiques
Série(s) : Non précisé.
ISBN : 978-2-7302-1415-5
EAN13 : 9782730214155
Reliure : Broché
Pages : XIV-328
Hauteur: 24.0 cm / Largeur 17.0 cm
Épaisseur: 2.1 cm
Poids: 608 g