Chargement...
Chargement...

Recherches générales sur les surfaces courbes (Disquisitiones generales circa superficies curvas); Représentation conforme

Auteur : Carl Friedrich Gauss

Paru le : 27/05/2008
Éditeur(s) : J. Gabay
Série(s) : Non précisé.
Collection(s) : Non précisé.
Contributeur(s) : Non précisé.

27,00 €
Expedié sous 10 à 15 jours (sous réserve de confirmation)
Livraison à partir de 0,01 €
-5 % Retrait en magasin avec la carte Mollat
en savoir plus

Résumé

Les résultats des travaux sur les droites dans l'espace mettant en évidence les notions de "coordonnées curvilignes" et de "courbure totale". Texte paru dans les "Nouvelles annales de mathématiques", onzième tome. Cette étude est suivie d'un mémoire traitant de la représentation des parties d'une surface donnée. ©Electre 2019

Quatrième de couverture

Recherches générales sur les surfaces courbes (Disquisitiones generales circa superficies curvas) « Les recherches les plus anciennes relatives à la géométrie infinitésimale des courbes et surfaces remontent au 18e siècle. À propos des courbes, apparaissent dès l'origine les notions de tangente, de plan osculateur (d'une courbe gauche), de cercle de courbure, de développée, de longueur d'arc. Quant aux surfaces, ce sont surtout les relations de courbure qui ont fait l'objet de recherches ; ces recherches sont dues à L. Euler et à J.-B. M. Meusnier. Mais la géométrie infinitésimale ne reçut son plein essor qu'à la suite de la publication de l'Application de l'analyse à la géométrie par G. Monge et des Disquisitiones générales circa superficies curvas par C. F. Gauss. C. P. Gauss introduit deux notions essentielles auxquelles son nom est resté attaché : . Les coordonnées curvilignes sur une surface. . La courbure totale d'une surface en un point quelconque, qu'il définit comme l'inverse du produit des deux rayons de courbure principaux de la surface en ce point. Dans l'expression de l'élément linéaire de la surface par les coordonnées curvilignes se présentent les coefficients E, F, G, dont il a fait ressortir l'importance fondamentale pour la théorie des surfaces applicables l'une sur l'autre ; on peut exprimer la courbure de Gauss au moyen de ces coefficients et de leurs dérivées par rapport aux coordonnées. C. P. Gauss étudie en même temps les surfaces en se plaçant à un point de vue tout nouveau ; il les considère comme des corps infiniment minces, des tissus flexibles et inextensibles ; dans leurs déformations la courbure totale en un point quelconque reste invariante, et par suite l'égalité des courbures totales aux points correspondants est une condition nécessaire pour que deux surfaces soient applicables l'une sur l'autre. Mais cette condition n'est suffisante que pour les surfaces à courbure totale constante ; dans les autres cas, il faut encore d'autres conditions, comme l'a fait remarques E. P. A. Minding. L'équation différentielle des lignes géodésiques sur une surface a été également établie par C. F. Gauss et utilisée par lui pour d'autres problèmes (coordonnées polaires, cercles géodésiques, courbes parallèles). » G. Fano et S. Carrus, Exposé parallèle du développement de la géométrie synthétique et de la géométrie analytique pendant le 19e siècle. Encyclopédie des sciences mathématiques pures et appliquées, t. III, vol. 1, art. III-3. Reprint Jacques Gabay.

Fiche Technique

Paru le : 27/05/2008

Thématique : Mathématiques Appliquées

Auteur(s) : Auteur : Carl Friedrich Gauss

Éditeur(s) : J. Gabay

Collection(s) : Non précisé.

Série(s) : Non précisé.

ISBN : 2-87647-293-7

EAN13 : 9782876472938

Format : Non précisé.

Reliure : Broché

Pages : Non précisé.

Hauteur : 24 cm / Largeur : 16 cm

Épaisseur : 0,7 cm

Poids : 230 g