en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Classique de la géométrie analysant les propositions d'Euclide en parallèle avec l'ouvrage de Pappus. Un examen qui laisse apparaître l'importance de la propriété projective du rapport anharmonique de quatre points, qui se trouve démontrée dans six Lemmes différents. Parmi des développements, la théorie des divisions homographiques formées sur deux droites ou sur une seule. ©Electre 2025
Ayant dû présenter une analyse de l'ouvrage de Pappus, surtout des nombreux Lemmes relatifs aux Porismes d'Euclide, dans l'Aperçu historique*, où je traitais de l'origine et du développement des Méthodes en Géométrie, j'ai été conduit à m'occuper, après tant d'autres géomètres, de la question des Porismes. L'intérêt du sujet m'a entraîné souvent dans des recherches plus prolongées que je ne l'aurais voulu, excité par le désir de parvenir à porter un jugement sur le travail de Simson, et même à donner suite, s'il m'était possible, à cette divination qui paraissait comporter plusieurs questions essentielles, indépendamment du rétablissement de l'ouvrage lui-même.
On avait remarqué dans les Lemmes de Pappus certaines traces de la théorie des transversales, telles que quelques propriétés relatives au rapport harmonique de quatre points et une relation d'involution dans le quadrilatère coupé par une droite.
Un nouvel examen de ces Lemmes m'y a fait reconnaître une autre proposition, plus humble en apparence peut-être, et qui, par cette raison sans doute, avait échappé aux investigations antérieures, quoique, en réalité, elle ait une bien plus grande importance que toutes les autres. Il s'agit, en effet, de la propriété projective du rapport anharmonique de quatre points, qui se trouve démontrée dans six Lemmes différents et dont, en outre, Pappus fait usage pour la démonstration de plusieurs autres Lemmes.
Ces circonstances, bien propres à fixer toute mon attention, pouvaient m'autoriser à penser que les propositions d'Euclide étaient de celles auxquelles conduisent naturellement les développements et les applications de la notion du rapport anharmonique, devenus fondamentale dans la géométrie moderne.
Parmi ces développements se présente en première ligne la théorie des divisions homographiques formées sur deux droites ou sur une seule, dont le caractère propre consiste en ce que le rapport anharmonique de quatre points d'une division est égal à celui des quatre points correspondants de l'autre division : ce qu'on exprime par des équations à deux, à trois et à quatre termes.
Or, ces équations une fois connues, on ne pouvait manquer de s'apercevoir que la plupart des énoncés de Pappus constituent des relations de segments telles que celles qui se déduisent de ces équations mêmes. Remarque importante, car elle devait faire espérer que ce pourrait être cette théorie fort simple des divisions homographiques qui donnerait enfin la clef des nombreux Porismes énoncés par Pappus et dont la signification avait résisté aux efforts de tant de géomètres et de Simson lui-même.
Et en effet, ce point de départ dans mes essais de divination m'a conduit assez aisément au rétablissement de la plupart des énoncés de Pappus, c'est-à-dire, à des propositions, souvent très multiples, qui satisfont aux conditions exprimées par ces énoncés concis et énigmatiques.
* Reprint par les Éditions Jacques Gabay.
Paru le : 16/02/2007
Thématique : Mathématiques Appliquées
Auteur(s) : Auteur : Michel Chasles
Éditeur(s) :
J. Gabay
Collection(s) : Non précisé.
Série(s) : Non précisé.
ISBN : 978-2-87647-258-7
EAN13 : 9782876472587
Reliure : Broché
Pages : IX-324
Hauteur: 24.0 cm / Largeur 16.0 cm
Épaisseur: 1.7 cm
Poids: 560 g