en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Panorama des développements récents de l'étude des invariants locaux de la géométrie conforme et une synthèse des principaux résultats, accessible aux lecteurs ayant une connaissance de base de la géométrie riemannienne. ©Electre 2025
En 1985, Fefferman et Graham ont introduit un programme ambitieux (dit de la « métrique ambiante ») d'étude des invariants locaux de la géométrie conforme. Celui-ci s'est considérablement développé ces dernières années, menant à la définition de nombreux objets nouveaux : opérateurs de Graham-Jenne-Mason-Sparling (GJMS) généralisant ceux de Yamabe et de Paneitz, Q-courbure de Branson... et à des applications parfois spectaculaires et inattendues : classification des variétés conformément plates de dimension 4 à caractéristique d'Euler positive, théorème « de pincement conforme » de la sphère, etc. Absentes de la stratégie originelle, la géométrie et l'analyse sur les variétés asymptotiquement hyperboliques d'Einstein (ou Poincaré-Einstein) se sont révélées un élément essentiel du programme. L'objectif de ce livre est de présenter un panorama des développements récents et une synthèse des principaux résultats, accessible à des lecteurs ayant une connaissance de base de la géométrie riemannienne.
In 1985, Fefferman and Graham initiated an ambitious program of study of conformal geometry (known as the « ambient metric » method). This has known tremendous developments in the last few years, leading to the definition of a number of new invariants : Graham-Jenne-Mason-Sparling (GJMS) operators generalizing the Yamabe and Paneitz operators, Branson Q-curvatures... and to remarkable applications to conformally flat manifolds of dimension 4 and nonnegative Euler characteristic, or to conformally invariant pinching theorems. An essential role is played in the theory by asymptotically hyperbolic Einstein metrics (or Poincaré-Einstein metrics) associated to a conformal class. The book is devoted to a présentation of the theory together with a description of the latest developments. It should be accessible to all readers having a basic knowledge of Riemannian geometry.
Paru le : 15/09/2009
Thématique : Mathématiques Appliquées
Auteur(s) : Auteur : Zindine Djadli Auteur : Colin Guillarmou Auteur : Marc Herzlich
Éditeur(s) :
Société mathématique de France
Collection(s) : Non précisé.
Série(s) : Non précisé.
ISBN : 978-2-85629-260-0
EAN13 : 9782856292600
Reliure : Broché
Pages : VI-172
Hauteur: 24.0 cm / Largeur 18.0 cm
Poids: 0 g