en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Un cours d'introduction et des exercices corrigés concernant le calcul stochastique. ©Electre 2025
La théorie générale des processus et de l'intégrale stochastiques est rarement enseignée en master 1 ou en école d'ingénieurs. Cependant la modélisation stochastique a de plus en plus souvent besoin de modèles discontinus faisant appel à cette théorie. Par ailleurs, si on extrait des grands traités les seules notions de théorie générale nécessaires à la construction de l'intégrale stochastique et à l'obtention de la formule d'Ito, on aboutit à un texte qui peut être à la fois de taille raisonnable et abordable au niveau du master.
Rendre plus accessible un domaine jusque-là réservé aux seuls spécialistes, par des démonstrations très détaillées et commentées et la présence de nombreux exercices corrigés, est l'ambition de cet ouvrage.
Après une introduction situant le contexte et donnant les grandes lignes de la construction de l'intégrale stochastique, trois chapitres présentent des rappels et des compléments sur l'intégration classique, les martingales et la topologie générale. Le vrai point de départ de la théorie est le théorème de capacité de Choquet. Les théorèmes de sections optionnelles et prévisibles de Meyer en découlent facilement. On peut alors définir les projections optionnelles et prévisibles, établir leurs propriétés et démontrer le célèbre théorème de Doob-Meyer. Ce dernier résultat, avec celui concernant la décomposition des martingales locales, constitue la clé de la définition de l'intégrale stochastique. La covariation des semi-martingales et la formule d'Ito (donc le calcul stochastique) dérivent à leur tour de l'existence et des propriétés de l'intégrale stochastique.
Paru le : 08/06/2016
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : Jean-Claude Laleuf
Éditeur(s) :
Ellipses
Collection(s) : Références sciences
Série(s) : Non précisé.
ISBN : 978-2-340-01154-0
EAN13 : 9782340011540
Reliure : Broché
Pages : 331
Hauteur: 24.0 cm / Largeur 19.0 cm
Épaisseur: 2.0 cm
Poids: 592 g