en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Un parcours didactique et professionnalisant permettant de s'intégrer à une équipe de data scientists, d'aborder des articles de recherche en langage R, ou de manager une équipe projet comprenant des data scientists. Les auteurs abordent notamment des sujets comme le traitement du langage naturel, les séries temporelles, la logique floue ou encore la manipulation des images. ©Electre 2025
Data Scientist et langage R
Guide d'autoformation à l'exploitation intelligente des Big Data
Tous les experts s'accordent à dire que 90 % des usages du Big Data proviennent de l'utilisation des data sciences et que celles-ci contribuent à l'essor de l'Intelligence Artificielle. L'objectif de ce livre est de proposer une formation complète et opérationnelle sur les data sciences qui permet de délivrer des solutions via l'usage du langage R.
Ainsi, les auteurs proposent un parcours didactique et professionnalisant qui, sans autre pré-requis qu'un niveau Bac en mathématiques et une grande curiosité, permet au lecteur :
Le livre ne se cantonne pas aux algorithmes classiques du « machine learning » (arbres de décision, réseaux neuronaux...), il aborde divers sujets importants comme le traitement du langage naturel, les séries temporelles, la logique floue, la manipulation des images.
Avec cette nouvelle édition, le livre s'enrichit de nouveaux sujets comme le développement full-stack avec R (bases de données, processus parallèles, programmation fonctionnelle, API), le partage de résultats d'analyse avec R Markdown et les dashboard Shiny, l'étude des représentations cartographiques et l'implémentation de graphes Deep Learning avec TensorFlow.
La dynamique de l'ouvrage soutient le lecteur pas à pas dans sa découverte des data sciences et l'évolution de ses compétences théoriques et pratiques. Le praticien en exercice y découvrira également de nombreux savoir-faire à acquérir et le manager pourra surfer sur l'ouvrage après avoir lu attentivement le bestiaire des data sciences de l'introduction, qui sans vulgarisation excessive présente le sujet en faisant l'économie de mathématiques ou de formalismes dissuasifs.
Les programmes R décrits dans le livre sont accessibles en téléchargement sur le site www.editions-eni.fr et peuvent être exécutés pas à pas.
Paru le : 13/06/2018
Thématique : Langages de programmation
Auteur(s) : Auteur : Henri Laude Auteur : Eva Laude
Éditeur(s) :
ENI
Collection(s) : Epsilon
Série(s) : Non précisé.
ISBN : 978-2-409-01397-3
EAN13 : 9782409013973
Reliure : Broché
Pages : 811
Hauteur: 22.0 cm / Largeur 18.0 cm
Épaisseur: 3.2 cm
Poids: 1328 g