en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Définition et mise en pratique de l'Intégrale de Lebesgue. Celle-ci est considérée par l'auteur comme un outil et non comme l'objet principal. ©Electre 2025
L'objectif de ce livre, écrit pour les étudiants de troisième année dé licence, mais qui conviendra à un public plus large, est l'enseignement de l'analyse : l'intégrale de Lebesgue y est considérée comme un outil, et non comme l'objet principal de l'étude, les définitions et les techniques fondamentales étant mises en place aussi rapidement que possible, il s'agit d'apprendre à les utiliser. L'auteur observe en même temps que beaucoup de questions d'analyse ne se comprennent bien qu'en « passant dans le complexe ». Si les fonctions analytiques sont souvent enseignées à part, dans toutes les grandes questions d'analyse, techniques de calcul intégral, analyse de Fourier et utilisation de la variable complexe sont en fait étroitement associées.
Un chapitre est donc consacré à l'analyse complexe immédiatement après le chapitre qui traite de l'intégration des fonctions continues et avant ceux qui sont consacrés à l'intégrale de Lebesgue (intégration dans R et Rn, espaces Lp, convolution) et aux séries et intégrales de Fourier.
La volonté d'enseigner le calcul intégral par son usage se manifeste aussi dans les très belles applications disséminées tout au long de l'ouvrage, et toujours traitées simplement : méthodes de Laplace et de la phase stationnaire, formule sommatoire d'Euler-MacLaurin, méthode du col, fonction d'Airy, aire de la sphère, poussée d'Archimède, polynômes de Legendre, quadrature gaussienne, espace de Sargmann..., applications qu'on rencontre rarement dans les cours d'intégration. Le dernier chapitre résume cette approche. On y montre comment avec un peu d'analyse de Fourier et de fonctions analytiques on peut obtenir de magnifiques formules liées à l'équation de la chaleur et aux nombres premiers.
Paru le : 16/11/2009
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : Bernard Candelpergher
Éditeur(s) :
Cassini
Collection(s) : Enseignement des mathématiques
Série(s) : Non précisé.
ISBN : 978-2-84225-053-9
EAN13 : 9782842250539
Reliure : Broché
Pages : XIII-460
Hauteur: 23.0 cm / Largeur 15.0 cm
Épaisseur: 2.2 cm
Poids: 756 g