en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Cette introduction à l'application des méthodes de l'analyse réelle pour l'étude de la répartition des nombres premiers a pour fil conducteur l'énoncé de la théorie analytique des nombres. Elle est accompagnée de 63 exercices. ©Electre 2025
Le présent fascicule de la collection Nano est une introduction à l'application des méthodes de l'analyse réelle à l'étude de la répartition des nombres premiers. Le texte a pour fil conducteur l'énoncé emblématique de la théorie analytique des nombres : le théorème des nombres premiers, qui affirme que le nombre de nombres premiers inférieurs ou égaux à x est asymptotiquement équivalent à x/ln(x), quand x tend vers l'infini. Autrement dit, l'écart moyen entre les N premiers nombres premiers est de l'ordre de ln(N). Cet énoncé et des progrès vers sa démonstration furent l'oeuvre de Legendre, Gauss, Lejeune Dirichlet et Tchebychev. Ce sont Hadamard et la Vallée Poussin (1896), qui donnèrent finalement, et de façon indépendante, une démonstration complète, mettant à profit les idées géniales de Riemann sur l'application de la théorie des fonctions d'une variable complexe à l'étude des nombres premiers, en rapport notamment avec ce que la postérité appela la fonction zêta de Riemann. Ces idées étaient si originales, et le résultat si brillant, que peu nombreux furent ceux qui se décidèrent à chercher une autre voie, élémentaire, vers la démonstration. Celle-ci ne fut finalement trouvée que plus d'un demi-siècle plus tard, par Erdös et Selberg (1949). Leurs idées renouvelèrent profondément ce domaine de recherches, et l'ambition de Michel Balazard a été en rédigeant ce livre de les présenter comme partie essentielle de la théorie générale des fonctions arithmétiques.
Le texte, qui ne manque pas de poésie, parut d'abord en russe comme la version développée d'une série de quatre cours donnés en 2009 à l'école d'été « Mathématiques Contemporaines » de Dubna (au nord de Moscou) et destinés aux élèves des lycées et universités. Le contenu a été également l'objet de deux exposés dans le cadre du séminaire pour étudiants « Mathematic Park », à Paris, en 2010. La présente version est plus approfondie, mais reste certainement accessible à partir des connaissances acquises dans les deux premières années d'université.
Les soixante-cinq exercices permettent, avec leurs solutions, d'assimiler activement les notions et techniques introduites.
Paru le : 08/09/2016
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : Michel Balazard
Éditeur(s) :
Calvage et Mounet
Collection(s) : Nano
Série(s) : Non précisé.
ISBN : 978-2-916352-52-7
EAN13 : 9782916352527
Reliure : Broché
Pages : 144
Hauteur: 20.0 cm / Largeur 14.0 cm
Épaisseur: 1.0 cm
Poids: 196 g